Plant City Walk-Bike Plan
Plant City Commute Mode Share

- Drove alone: 82.9%
- Carpoled: 10.2%
- Public transportation (0.1%)
- Walked: 1.4%
- Used a Bike (0.4%)
- Taxicab, motorcycle, or other means: 2.2%
- Worked at home: 2.9%

Disparity of Pedestrian and Bicycle Mode Share, Fatalities, and Funding

- 11.4% of all trips are taken by bicycle or on foot.
- 14.9% of roadway fatalities are pedestrians & bicyclists.
- But only 2.1% of federal transportation funding goes to bicycling and walking projects.

National Biking and Walking Trends
Plant City Walk-Bike Plan
Small towns are ideally sized to maximize bicycling and walking potential

- Average walking trip in US = 1.2 miles (50% less than half mile)

- Average bicycling trip in US = 4 miles (60% less than 2 miles)
Public Meeting – February 2nd

• About 40 people attended, 30 signed in
• What does Plant City mean to you?
 – Friendly, Community
• What are the top 3 places you go to?
 – Downtown, Church, Park
• Biggest concern w/bicycle and pedestrian mobility?
 – Lighting, safety, connectivity
• Top bicycle/pedestrian priority project?
 – Lighting, crosswalks, trails
• General Comment Forms:
 – Difficult to find places to run, lack of sidewalk connectivity, connect downtown and north Plant City
• General Comment Map:
 – High traffic areas, connect Walden Lake to Downtown, lighting improvements, trails and trail heads
Plan Priorities

– Key Themes

• Maintain the city character
• Concern for bicycle and pedestrian safety
• Connect residences with destinations
• Build a functional network
Bicycle and Pedestrian Networks
Plant City Walk-Bike Plan

Legend
- Existing Sidewalk
- Existing Trail
- Plant City Limits
Bicycle and Pedestrian Networks
Plant City Walk-Bike Plan
Bicycle and Pedestrian Networks
Plant City Walk-Bike Plan
Proposed Spine Routes
Plant City Walk-Bike Plan
Priority Catalyst Projects
Plant City Walk-Bike Plan

#1: Walking – Safety Improvements
#2: Biking – Minimum Bicycle Grid
#3: Trails – The Canal Connector
• Identified high-crash locations
• Provide for Pedestrian improvements
• SR 39 Resurfacing Programmed
• **Create** minimum on-street *BIKEWAY GRID* to the **CORE OF PLANT CITY**

• **Connect** to **MAJOR DESTINATIONS**

• **Connect** all four quadrants of **NEIGHBORHOODS** adjacent to Downtown Plant City **TO DOWNTOWN**
Catalyst Project #2: Biking - Minimum Bicycle Grid
Plant City Walk-Bike Plan
Catalyst Project #2: Biking - Minimum Bicycle Grid
Plant City Walk-Bike Plan
Catalyst Project #2: Biking - Minimum Bicycle Grid
Plant City Bicycle and Pedestrian Master Plan
Catalyst Project #2: Biking – Minimum Bicycle Grid
Plant City Bicycle and Pedestrian Master Plan
• **Create** beginning of **LARGER TRAIL NETWORK**

• **Enhance** **NETWORK CONNECTIVITY** from Frontage road to **DOWNTOWN PLANT CITY** – attract area cyclists from Lakeland and Tampa

• **Create** **LOCAL NEIGHBORHOOD CONNECTION**
Catalyst Project #3: Trails – Canal Connector
Plant City Walk-Bike Plan
Generalized Cost Estimates
Plant City Walk-Bike Plan

FDOT Costs Per Mile
5’ Sidewalk (one-side) = $200,000
5’ Bike Lanes = $180,000
7’ Buffered Bike Lanes = $260,000
12’ Multi-Use Trail = $420,000
Pedestrian infrastructure should be related to the surrounding context

- **Neighborhood streets** – Neighborhood streets should have sidewalks on *at least one side where densities are up to three dwelling units per acre*. On streets with higher density or streets with non-residential land uses, the City should require or prioritize sidewalks on both sides of the street.

- **Major roads** – Along major roadways (collector streets and above), sidewalks should be provided on both sides of the roadway.

- **Rural shoulder** – In rural areas, a paved shoulder can provide space for people walking outside of the roadway when there are no sidewalks. However, a shoulder is often inadequate for people who are walking along roadways with speeds above 30 miles per hour. In this instance, dedicated pedestrian facilities should be located adjacent to the roadway.

- **Streetscape Elements** – A landscape buffer should also be provided to plant shade trees and to create separation between vehicles and people walking along Neighborhood Streets and Major Roads. Pedestrian-scale lighting is also critical along major roads, neighborhood streets, and at intersections.
Bicycle infrastructure should be related to roadway type, posted speed, and volume.

Bicycle Facility Selection Criteria

<table>
<thead>
<tr>
<th>Facility</th>
<th>Average Annual Daily Traffic</th>
<th>Average Travel Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle Boulevard (2 Lane)</td>
<td>4,000 – 8,000</td>
<td>5 – 15</td>
</tr>
<tr>
<td></td>
<td>12,000 – 16,000</td>
<td>20 – 25</td>
</tr>
<tr>
<td></td>
<td>20,000 – 24,000</td>
<td>30 – 35</td>
</tr>
<tr>
<td></td>
<td>28,000 – 32,000</td>
<td>40 – 45</td>
</tr>
<tr>
<td></td>
<td>40,000 – 44,000</td>
<td>50 – 55</td>
</tr>
<tr>
<td></td>
<td>48,000 – 50,000+</td>
<td>60 – 65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On-Street Bike Lanes (2-3 Lane)</th>
<th>Average Annual Daily Traffic</th>
<th>Average Travel Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,000 – 8,000</td>
<td>5 – 15</td>
</tr>
<tr>
<td></td>
<td>12,000 – 16,000</td>
<td>20 – 25</td>
</tr>
<tr>
<td></td>
<td>20,000 – 24,000</td>
<td>30 – 35</td>
</tr>
<tr>
<td></td>
<td>28,000 – 32,000</td>
<td>40 – 45</td>
</tr>
<tr>
<td></td>
<td>40,000 – 44,000</td>
<td>50 – 55</td>
</tr>
<tr>
<td></td>
<td>48,000 – 50,000+</td>
<td>60 – 65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buffered Bike Lanes (2-5 lane)</th>
<th>Average Annual Daily Traffic</th>
<th>Average Travel Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,000 – 8,000</td>
<td>5 – 15</td>
</tr>
<tr>
<td></td>
<td>12,000 – 16,000</td>
<td>20 – 25</td>
</tr>
<tr>
<td></td>
<td>20,000 – 24,000</td>
<td>30 – 35</td>
</tr>
<tr>
<td></td>
<td>28,000 – 32,000</td>
<td>40 – 45</td>
</tr>
<tr>
<td></td>
<td>40,000 – 44,000</td>
<td>50 – 55</td>
</tr>
<tr>
<td></td>
<td>48,000 – 50,000+</td>
<td>60 – 65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Separated Bike Lanes (2-8 lane)</th>
<th>Average Annual Daily Traffic</th>
<th>Average Travel Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,000 – 8,000</td>
<td>5 – 15</td>
</tr>
<tr>
<td></td>
<td>12,000 – 16,000</td>
<td>20 – 25</td>
</tr>
<tr>
<td></td>
<td>20,000 – 24,000</td>
<td>30 – 35</td>
</tr>
<tr>
<td></td>
<td>28,000 – 32,000</td>
<td>40 – 45</td>
</tr>
<tr>
<td></td>
<td>40,000 – 44,000</td>
<td>50 – 55</td>
</tr>
<tr>
<td></td>
<td>48,000 – 50,000+</td>
<td>60 – 65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shared-Use Path (2-8 Lane)</th>
<th>Average Annual Daily Traffic</th>
<th>Average Travel Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,000 – 8,000</td>
<td>5 – 15</td>
</tr>
<tr>
<td></td>
<td>12,000 – 16,000</td>
<td>20 – 25</td>
</tr>
<tr>
<td></td>
<td>20,000 – 24,000</td>
<td>30 – 35</td>
</tr>
<tr>
<td></td>
<td>28,000 – 32,000</td>
<td>40 – 45</td>
</tr>
<tr>
<td></td>
<td>40,000 – 44,000</td>
<td>50 – 55</td>
</tr>
<tr>
<td></td>
<td>48,000 – 50,000+</td>
<td>60 – 65</td>
</tr>
</tbody>
</table>

Policy Approaches

Plant City Walk-Bike Plan
• Typical guidance for bike share systems
 – Feasibility Study
 – Detailed Planning and Design
 – Business and Financial Plans

• What may work in Plant City
 – Utilize either:
 • Nearby system providers (Lakeland or Tampa)
 • A small system service provider outside of the region
 – Strategic location of docks and bikes
 – Working directly and early with downtown businesses and ventures
Plant City Walk-Bike Plan